ECOFLEX MINI VRF

TWO-WAY CASSETTE TECHNICAL SELECTION DATA

Table of Contents

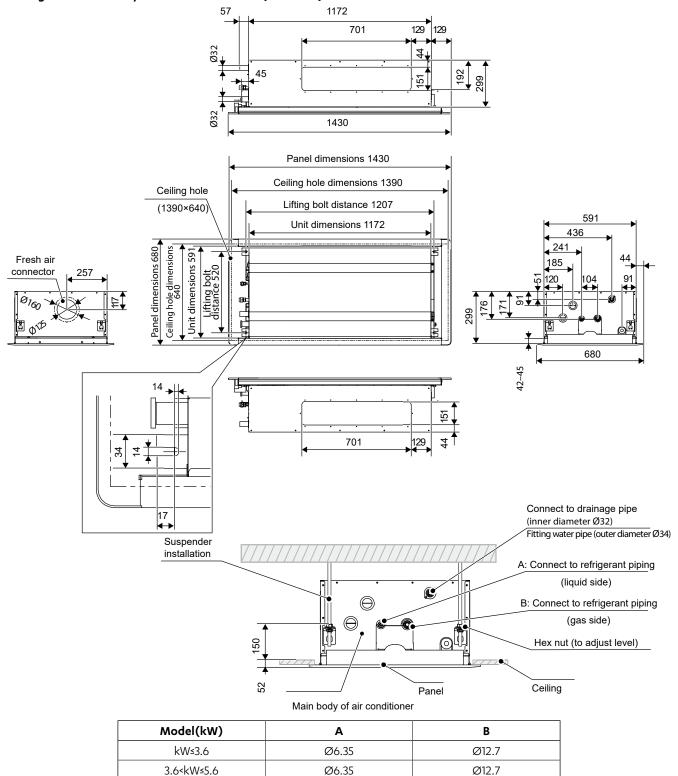
01. Specification	2
02. Dimensions	
03. Unit Placement	
04. Piping Diagram	
05. Wiring Diagram	
06. Capacity Tables	
07. Electrical Characteristics	
08. Sound Levels	
09. Temperature and Airflow Distributions	

ECOFLEX - Mini VRF

01.Specification

Model			MTC-022CS	MTC-028CS	MTC-036CS	MTC-045CS	MTC-056CS	MTC-071C		
Power supply			1-phase, 230V, 50Hz							
		kW	2.2	2.2 2.8 3.6			5.6	7.1		
Cooling ¹	Capacity	kBtu/h	7.5	9.6	12.3	15.4	19.1	24.2		
	Power Input	W	35	40	40	50	69	98		
Heating ²		kW	2.6	3.2	4	5	6.3	8		
	Capacity	kBtu/h	8.9	10.9	13.6	17.1	21.5	27.3		
	Power Input	W	35	40	40	50	69	98		
	Туре			,		C				
an motor type	Number					1				
	Number of rows			1			2			
	Tube pitch × row pitch	mm			21×1	3.37				
Indoor Coil	Fin spacing and type	mm	1.5							
	Tube OD and type	mm	Copper Ø7 Inner-groove							
	Dimensions (L×H×W)	mm		882×210×13.37		882×210×26.74				
	Number of circuits			4		6				
Air flow rate³ (N	Nax / Min) ⁷	l/s	182	/ 114	201 / 127	236 / 153	272 / 186	333 / 214		
Sound pressure	level ⁴ (Max / Min) ⁷	dB(A)	33 / 24 35 / 25			37 / 30	39 / 30	44 / 34		
	Net dimensions ⁶ (W×H×D)	mm	1259×299×591							
Main body	Packed dimensions (W×H×D)	mm	1355×400×675							
	Net/Gross weight	kg		29.7/36.3			31.6/38.2			
	Net dimensions ⁶ (W×H×D)	mm			1430×5	53×680				
Main body	Packed dimensions (W×H×D)	mm			1525×1	30×765				
	Net/Gross weight	kg	11/15							
Refrigerant typ	e		R-32							
Design pressure	e (H/L)	MPa	4.4/2.6							
Pipe	Liquid/Gas pipe	mm			Ø6.35	/Ø12.7				
connections	Drain pipe	mm			OD	Ø32				

Notes:


- 1. Indoor temperature 27°C DB, 19°C WB; outdoor temperature 35°C DB; equivalent refrigerant piping length 5m with zero level difference
- 2. Indoor temperature 20°C DB; outdoor temperature 7°C DB, 6°C WB; equivalent refrigerant piping length 5m with zero level difference.
- 3. Air flow rates are from the highest speed to the lowest speed, total 7 rates for each model.
- 4. Sound pressure level is from highest level to lowest level, total 7 levels for each model. Sound pressure level is measured 1.4m below the unit in a Sem-anechoic chamber.
- 5. Sound power level is from highest level to lowest level, total 7 levels for each model.
- 6. Unit body dimensions given are the largest external dimensions of the unit, including hanger attachments.
- 7. Refer to the section Sound Levels for more details.

02.Dimensions

02.01. **Unit Dimensions**

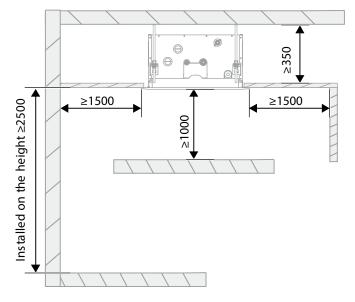
Figure 2.1: Two-way Cassette dimensions (unit: mm)

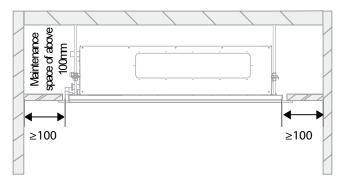
Ø9.52

Ø15.9

5.6<kW≤7.1

03.Unit Placement

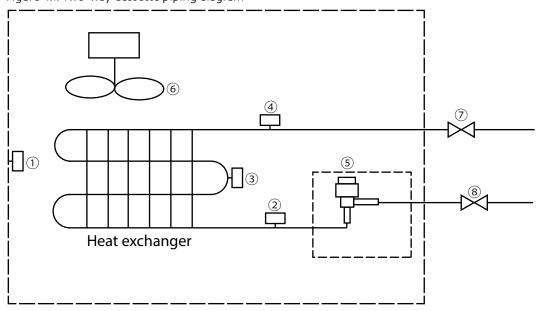

03.01. Placement Considerations


Unit placement should take account of the following considerations:

- Units should not be installed in the following locations:
 - A place filled with mineral oil, fumes or mist, like a kitchen.
 - A place where there are corrosive gases, such as acid or alkaline gases..
 - A place exposed to combustible gases and using volatile combustible gases such as diluent or gasoline.
 - A place where there is equipment emitting electromagnetic radiation.
 - A place where there is a high salt content in the air e.g. coastal environment.
 - Do not use the air conditioner in an environment where an explosion may occur.
 - Places like in vehicles or cabin rooms.
 - Factories with major voltage fluctuations in the power supplies.
 - Other special environmental conditions.
- Units should be installed in positions where:
 - Ensure that the airflow in and out of the IDU is reasonably organized to form an air circulation in the room.
 - Ensure IDU maintenance space.
 - The nearer the drainage pipe and copper pipe are to the ODU, the lower the pipe cost is.
 - Prevent the air conditioner from blowing directly to the human body.
 - The closer the wiring to the power cabinet, the lower the wiring cost is.
 - Keep the air-conditioning return air away from the setting sun of the room.
 - Be careful not to interfere with the light tank, fire pipe, gas pipe and other facilities.
 - The IDU should not be lifted in the places like load-bearing beam and columns that affect the structural safety of the house.
 - The wired controller and the IDU should be in the same installation space; otherwise, the sampling point setting of the wired controller need to be changed.

03.02. Space Requirements

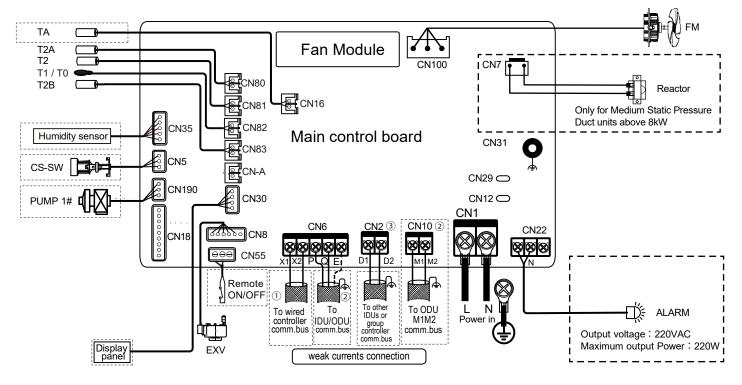
Figure 3.1: Two-way Cassette space requirements (unit: mm)


Notes:

1. The centerline of the maintenance hole should be in the same position as the centerline of the indoor unit.

04. Piping Diagram

Figure 4.1: Two-way Cassette piping diagram


Legend		
1	T1	Inlet Air Temp. Sensor
2	T2A	Liquid Pipe Temp. Sensor
3	T2	Middle Pipe Temp. Sensor
4	T2B	Gas Pipe Temp. Sensor
5	EXV	Electronic expansion valve
6	FM	Fan motor
7	-	Gas side
8	-	Liquid side

ECOFLEX - Mini VRF

05. Wiring Diagram

Figure 5.1: Two-way Cassette wiring diagram

Installation Notes

ACAUTION

- All installation, servicing and maintenance must be carried out by competent and suitably qualified, certified and accredited professionals and in accordance with all applicable legislation.
- Units should be grounded in accordance with all applicable legislation. Metal and other conductive components should be insulated in accordance with all applicable legislation.
- Power supply wiring should be securely fastened at the power supply terminals loose power supply wiring would represent a fire risk.
- After installation, servicing or maintenance, the electric control box cover should be closed. Failing to close the electric control box cover risks fire or electric shock.
- The dotted lines indicate the field wiring or optional function.
- PQ and M1M2 communication ports both are used for indoor and outdoor communication, and only one of them can be used at a time. Meanwhile, be sure to connect the same communication ports (PQ to PQ; M1M2 to M1M2) in case of damage of the main control board.
- D1D2 communication ports are used for group control communication. When connecting the group controller, the D1D2 port of the indoor units that are to be group controlled must be connected in a daisy chain, and the group controller must be connected to the X1X2 port of one of the indoor units in the group control, and set to group control mode. In addition, D1D2 communication ports can also be connected to the central controller.

ECOFLEX - Mini VRF

06.Capacity Tables

06.01. Cooling Capacity Table

Table 6.1: Two-way Cassette cooling capacity

	Indoor air temperature (°C WB/DB)													
Model	14/20		16/23		18/26		19/27		20/28		22/30		24/32	
	TC	sc	тс	sc	тс	sc	TC	sc	тс	sc	TC	sc	тс	sc
MTC-022CS	2.0	1.9	2.1	2.0	2.2	2.0	2.2	1.9	2.3	1.9	2.3	1.7	2.4	1.7
MTC-028CS	2.5	2.4	2.7	2.6	2.8	2.5	2.8	2.4	2.9	2.4	2.9	2.2	3.0	2.1
MTC-036CS	3.2	3.1	3.4	3.2	3.6	3.3	3.6	3.1	3.7	3.0	3.8	2.9	3.9	2.7
MTC-045CS	4.0	3.8	4.3	3.9	4.5	3.9	4.5	3.8	4.6	3.7	4.7	3.5	4.8	3.3
MTC-056CS	5.0	4.8	5.3	4.8	5.6	4.9	5.6	4.7	5.7	4.6	5.8	4.3	6.0	4.1
MTC-071CS	6.3	6.0	6.7	6.1	7.0	6.2	7.1	6.0	7.2	5.8	7.4	5.5	7.6	5.2

Abbreviations:

TC: Total capacity (kW)

SC: Sensible capacity(kW)

Notes:

1. Shaded cells indicate rated conditions.

06.02. Heating Capacity Table

Table 6.2: Two-way Cassette heating capacity

	Indoor air temperature (°C DB)									
Model	16	18	20	21	22	24				
	тс	тс	тс	тс	тс	тс				
MTC-022CS	2.8	2.8	2.6	2.5	2.4	2.3				
MTC-028CS	3.4	3.4	3.2	3.1	3.0	2.8				
MTC-036CS	4.2	4.2	4.0	3.8	3.8	3.5				
MTC-045CS	5.3	5.3	5.0	4.8	4.7	4.4				
MTC-056CS	6.7	6.6	6.3	6.1	5.9	5.5				
MTC-071CS	8.5	8.4	8.0	7.8	7.5	7.0				

Abbreviations:

TC: Total capacity (kW)

Notes:

1. Shaded cells indicate rated conditions.

ECOFLEX - Mini VRF

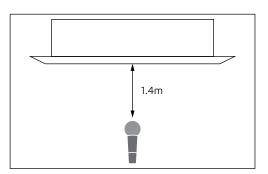
07. Electrical Characteristics

Table 7.1: Two-way Cassette electrical characteristics

			Indoor Fan Motors					
Model Hz	Rated Volts	Min. volts	Max. volts	MCA	MFA	Rated motor output (kW)	FLA	
MTC-022CS	50	230	217	243	0.47	15	50	0.38
MTC-028CS	50	230	217	243	0.47	15	50	0.38
MTC-036CS	50	230	217	243	0.52	15	50	0.42
MTC-045CS	50	230	217	243	0.59	15	50	0.47
MTC-056CS	50	230	217	243	0.9	15	50	0.72
MTC-071CS	50	230	217	243	1.3	15	50	1.04

Abbreviations:

MCA: Minimum Circuit Amps MFA: Maximum Fuse Amps FLA: Full Load Amps


08. Sound Levels

08.01. Overall

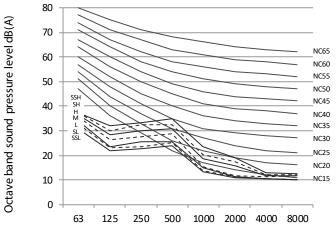
Table 8.1.1: Two-way Cassette sound pressure levels¹

AA o dol	Sound pressure levels dB								
Model	SSH	SH	Н	M	L	SL	SSL		
MTC-022CS	33	31	30	29	27	25	24		
MTC-028CS	33	31	30	29	27	25	24		
MTC-036CS	35	33	32	30	29	27	25		
MTC-045CS	37	36	35	34	32	31	30		
MTC-056CS	39	37	36	35	33	31	30		
MTC-071CS	44	42	41	40	38	36	34		

Figure 8.1.1: Two-way Cassette sound pressure level measurement

Notes:

1. Sound pressure levels are measured 1.4m below the unit in a semi-anechoic chamber at 0 Pa static pressure. During insitu operation, sound pressure levels may be higher as a result of ambient noise.


Table 8.1.2: Two-way Cassette Air flow rate

Model	Sound pressure levels dB								
Model	SSH	SH	Н	M	L	SL	SSL		
MTC-022CS	182	170	159	147	136	125	114		
MTC-028CS	182	170	159	147	136	125	114		
MTC-036CS	201	189	178	164	154	141	127		
MTC-045CS	236	220	203	186	175	164	153		
MTC-056CS	272	257	238	222	210	195	186		
MTC-071CS	333	310	297	278	256	224	214		

ECOFLEX - Mini VRF

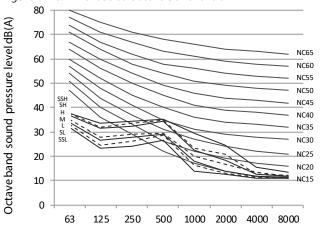

08.02. Octave Band Levels

Figure 8.2.1: MTC-022CS octave band levels

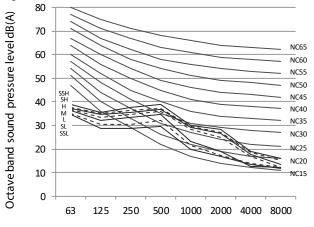

Octave band center frequency (Hz)

Figure 8.2.3: MTC-036CS octave band levels

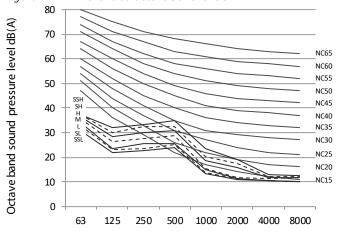

Octave band center frequency (Hz)

Figure 8.2.5: MTC-056CS octave band levels

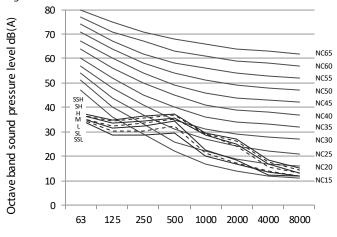

Octave band center frequency (Hz)

Figure 8.2.2: MTC-028CS octave band levels

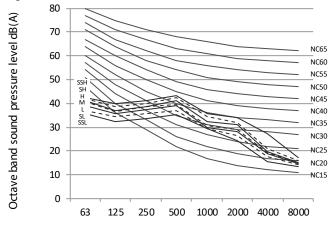

Octave band center frequency (Hz)

Figure 8.2.4: MTC-045CS octave band levels

Octave band center frequency (Hz)

Figure 8.2.6: MTC-071CS octave band levels

Octave band center frequency (Hz)

09. Temperature and Airflow Distributions

09.01. Simulate condition

Table 9.1: Two-way Cassette simulate condition

Models	Room size (m)	Ceiling height (m)	Flow angle (Cooling/Heating)	Placing
MTC-022CS	6*6	2.7	35°/55°	Cassette
MTC-028CS	6*6	2.7	35°/55°	Cassette
MTC-036CS	6*6	2.7	35°/55°	Cassette
MTC-045CS	8*8	2.7	35°/55°	Cassette
MTC-056CS	8*8	2.7	35°/55°	Cassette
MTC-071CS	8*8	2.7	35°/55°	Cassette

Note:

1. These figures and videos are based on software simulation. They show typical temperature and airflow distributions in the conditions above. In the actual installation, they may differ from these figures and videos under the influence of air temperature conditions, ceiling height, cooling/heating load, obstacles, etc.

09.02. Airflow distributions

In the below charts, Y-Axis represents the height in meters (charts shows the installation height at 2.5m) and the X-Axis represents the floor dinstance in meters. These chart shows the air speed distribution 300s after the machine is turned on. The data in the curves shows air speed in meter per seconds (eq: 0.5 means the air speed in that area is 0.5m/s).

Figure 9.2.1: MTC-022CS cooling at 300S

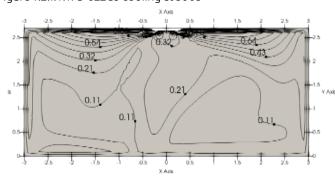


Figure 9.2.2: MTC-022CS heating at 300S

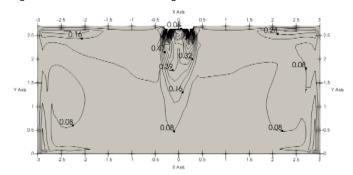


Figure 9.2.3: MTC-028CS cooling at 300S

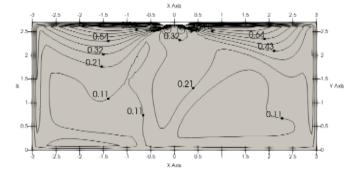
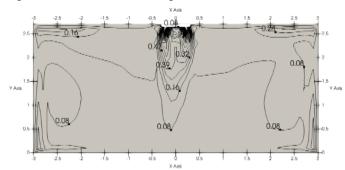



Figure 9.2.4: MTC-028CS heating at 300S

ECOFLEX - Mini VRF

Figure 9.2.5: MTC-036CS cooling at 300S

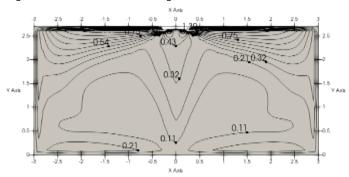


Figure 9.2.6: MTC-036CS heating at 300S

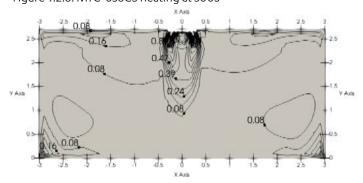


Figure 9.2.7: MTC-045CS cooling at 300S

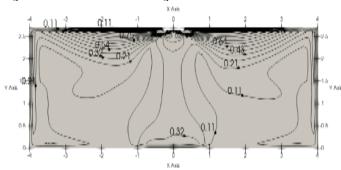


Figure 9.2.8: MTC-045CS heating at 300S

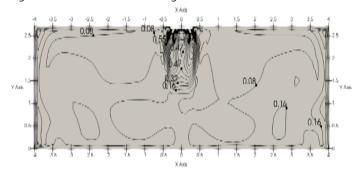


Figure 9.2.9: MTC-056CS cooling at 300S

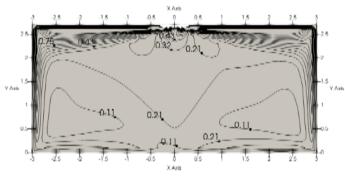


Figure 9.2.10: MTC-056CS heating at 300S

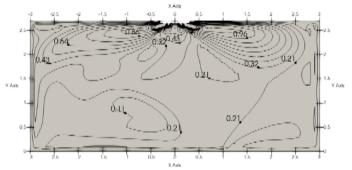


Figure 9.2.11: MTC-071CS cooling at 300S

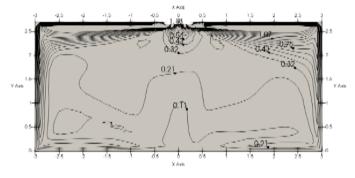
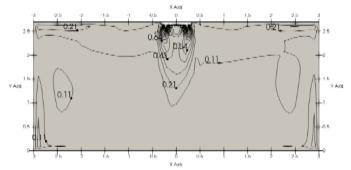



Figure 9.2.12: MTC-071CS heating at 300S

ECOFLEX - Mini VRF

Temperature distributions 09.03.

In the below charts, Y-Axis represents the height in meters (charts shows the installation height at 2.5m) and the X-Axis represents the floor dinstance in meters. These chart shows the air speed distribution 300s after the machine is turned on. The data in the curves shows temperature distrubution.

Figure 9.3.1: MTC-022CS cooling at 300S

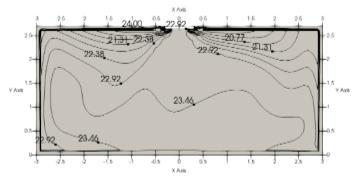


Figure 9.3.2: MTC-022CS heating at 300S

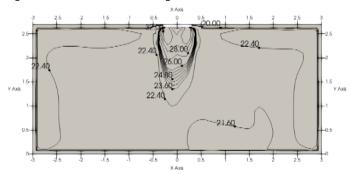


Figure 9.3.3: MTC-028CS cooling at 300S

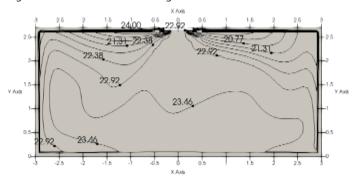


Figure 9.3.4: MTC-028CS heating at 300S

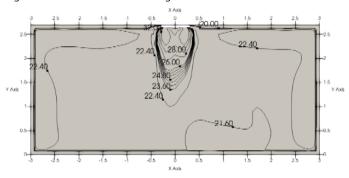


Figure 9.3.5: MTC-036CS cooling at 300S

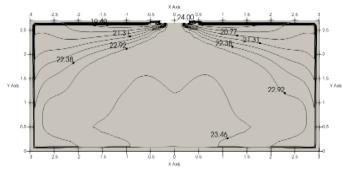


Figure 9.3.6: MTC-036CS heating at 300S

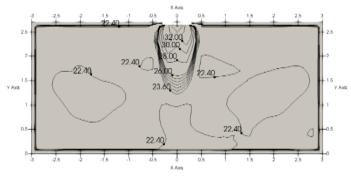


Figure 9.3.7: MTC-045CS cooling at 300S

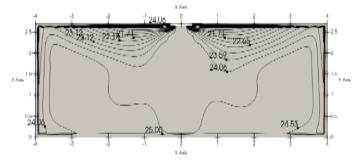
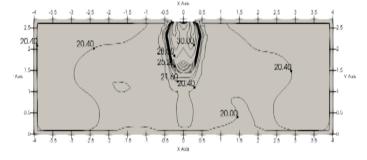



Figure 9.3.8: MTC-045CS heating at 300S

ECOFLEX - Mini VRF

Figure 9.3.9: MTC-056CS cooling at 300S

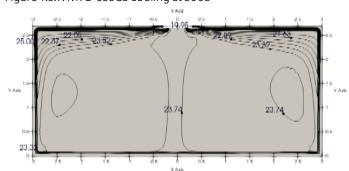


Figure 9.3.11: MTC-071CS cooling at 300S

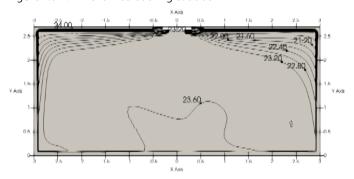


Figure 9.3.10: MTC-056CS heating at 300S

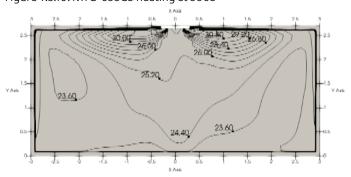
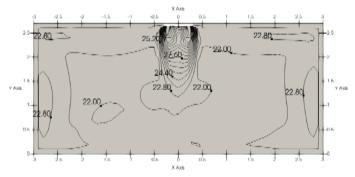



Figure 9.3.12: MTC-071CS heating at 300S

actronair.com.au 1300 522 722

 $@ Copyright 2023 \ Actron \ Engineering \ Pty \ Limited \ ABN \ 34 \ 002767240. \ @ Registered \ Trade \ Marks \ of \ ABN \$ Actron Engineering Pty Limited.

ActronAir is constantly seeking ways to improve the design of its products. Therefore, specifications are subject to change without notice.